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Practice CS143 Midterm Exam
This midterm exam is open-book, open-note, open-computer, but closed-network.  This means 
that if you want to have your laptop with you when you take the exam, that's perfectly fine, but 
you must not use a network connection.  You should only use your computer to look at notes 
you've downloaded from online in advance.

SUNetID:

Last Name:

First Name:

I accept both the letter and the spirit of the honor code.  I have not received any assistance on this 
test, nor will I give any.

(signed) _______________________________________________________________

You have two hours to complete this midterm.  There are sixty total points, which means that as 
a rough heuristic you might want to spend about two minutes per point.  This midterm is worth 
20% of your total grade in this course.

Good luck!

Question Points Grader

(1) C-Style Comments (8) /8

(2) LL Parsing (16) /16

(3) LR Parsing (20) /20

(4) Right-to-Left Parsing (16) /16

(60) /60

The actual midterm exam will have space in which you can write your answers.  In order to save 
paper, I've taken most of the whitespace out of this handout.
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Problem 1: C-Style Comments (8 points total)

Perhaps the hardest part of the first programming assignment was correctly handling C-style 
comments, which begin with /* and end with */.  The challenge with matching these comments 
is, as you probably realized, that the “obvious” regular expression for C-style comments:

    ("/*").*("*/")

does not interact correctly with maximal-munch.  In particular, if this regular expression is run  
using maximal-munch on the string

    /* Comment. */ "No Comment." /* Comment. */

it will match the entire string as a comment, even though the intended tokenization is as a 
comment, then a string literal, then another comment.

In this question, you'll consider two proposed solutions to the problem.

(i) flex with Custom NFAs         (4 Points)

Suppose that an open-source contributor adds an extension to flex that allows you to describe 
lexemes to match using finite automata instead of regular expressions.  The rules of maximal-
munch still apply to these automata, so if an automaton can match a string in multiple ways, 
flex will pick the longest such match.

In the space below, construct an NFA that correctly accepts C-style comments, even when using 
maximal-munch.  For simplicity, you can assume that the alphabet consists of /, *, and the 
character a (which represents “something other than slash or star”).  Be sure to label the start 
state and any accepting states.  You do not need to construct the automaton using the RE-to-NFA 
algorithm from class.
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(ii) Negated Regular Expressions           (4 Points)

Another potential solution to the problem would be to support negated regular expressions.  We 
augment the standard regular expression operators with a new operator, !, which matches 
anything except the given regular expression.  For example, the regular expression a! matches 
any string except the single-character string a, while

    ("/*")(.*"*/".*!)("*/")

would match C-style comments by matching the open comment, then any string that doesn't 
contain a close comment symbol, and finally a close-comment symbol.

In order for this operator to be useful in flex, we need to come up with a construction that will 
convert regular expressions that use the ! operator into automata.

Consider the following proposed construction for converting a negated regular expression R! to 
an automaton:

1. Construct the automaton for R using the algorithm covered in class.
2. Create a new accepting state.
3. For each state in R except for R's accepting state, add an ε-transition from that state to the 

new accepting state.
4. Make the old accepting state of R no longer accepting.

For example, here is a side-by-side comparison of the automata for the regular expressions a and 
a!, along with those for ab and (ab)!

start a

start a

start
a ε b

ε

start
a ε b

ε
    ε ε

a

a!

ab  

(ab)!  

This construction contains an error that, for certain regular expressions using !, will cause the 
generated automaton to be incorrect.  Find such a regular expression, show the resulting 
automaton, and explain why it is incorrect.
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Problem 2: LL(1) Parsing (16 points total)

Consider the following context-free grammar, which describes C-style function declarations 
involving pointers:

Function → Type id (Arguments)
Type →  id
Type → Type*
Arguments → ArgList
Arguments → ε
ArgList → Type id , ArgList
ArgList → Type id

For example, this grammar could generate declarations like these:

id* id()
id** id(id*** id)
id id(id id, id* id)

For reference, the terminals in this grammar are

id ( ) * , $

where $ is the end-of-input marker, and the nonterminals are

Function
Type
Arguments
ArgList

(i) The First Step is Admitting It (2 Points)
 
As written, this grammar is not LL(1).  Identify the conflicts in the grammar that make it not 
LL(1) and explain each.
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(ii) Repairing the Grammar (4 Points)
 
Based on the conflicts you identified above, modify the grammar so that it is LL(1).  You may 
introduce new nonterminals if you wish, but do not change any rules besides those you identified 
in part (i) as causing the problem.  Show the resulting grammar below.

(iii) FIRST sets (3 Points)
 
Construct the FIRST sets for each nonterminal in the modified grammar.  Show your result 
below.

(iv) FOLLOW sets (3 Points)
 
Construct the FOLLOW sets for each nonterminal in the modified grammar.  Show your result 
below.

(v) Building the Parse Table (4 Points)

Using your results from parts (ii), (iii), and (iv), construct the LL(1) parse table for your updated 
grammar.  If you identify any LL(1) conflicts, don't worry; just put all applicable entries in the 
table.  In other words, if you discover now that your grammar is not LL(1), we won't hold that 
against you for this part of the problem.
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Problem 3: LR Parsing (20 points total)

In this problem, we will explore how several different LR parsing algorithms handle or fail to 
handle a particular grammar:

S → X
X → DE
D → PD
D → ε
E → QE
E → ε
P → id id
Q → id = id

Below is an LR(0) automaton for this language.  We've numbered the states for your 
convenience.

S→·X
X→·DE
D→·PD
D→ · 
P→·id id

P→id · id P→id id·

D→P·D
D→·PD
D→·
P→·id id

D→PD·

X→D·E
E→·QE
E→·
Q→·id=id

X→DE·

Q→id·=id Q→id=·id Q→id=id·

      Q

             id      

= idid

       D

  id

id

    P       

    id

D

start

1

3
4

5 6

7

P                    

E      E→Q·E
E→·QE
E→·
Q→·id=id

                 Q

8 9 10

11

12

E

S→X·
2

       X

E→QE·

13

The terminals in this grammar are

id = $

where $ is the end-of-input symbol.

Feel free to tear out this sheet as a reference.
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(i) LR(0) (2 Points)
 
This grammar is not LR(0).  Why not?

(ii) SLR(1) (4 Points)
 
Is this grammar SLR(1)?  If so, why?  If not, why not?

(iii) LALR(1), Part One (4 Points)
 
In this next section, you'll determine the lookaheads for each reduce item to see if the grammar is 
LALR(1) by using the LALR(1)-by-SLR(1) algorithm.  As a first step, create the augmented 
LALR(1) grammar for this language using the algorithm covered in lecture.  Show your result.
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(iv) LALR(1), Part Two (3 Points)
 
Compute the FOLLOW sets for each nonterminal in the LALR(1)-augmented grammar.  Show 
your result below.

(v) LALR(1), Part Three  (4 Points)
 
Is this grammar LALR(1)?  If so, use your answers from parts (iii) and (iv) to prove why.  If not, 
use your answers from parts (iii) and (iv) to prove why not. (Even if you already know for a fact  
whether this grammar is LALR(1) or not, you must use the results from the last two problems to  
back up your claim)

(vi) LR(1) (3 Points)
 
Is this grammar LR(1)?  If so, why?  If not, why not?
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Problem 4: Right-to-Left Parsing (16 points total)

In lecture, we talked about seven parsing algorithms that work from the left to the right: Leftmost 
DFS, LL(1), LR(0), SLR(1), LALR(1), LR(1), and Earley.  In the first written assignment, you 
had the opportunity to see what happens when you change the left-to-right scanning algorithm 
we covered in class to work from right-to-left.  In this question, you'll get to see what happens 
when you change the left-to-right parsing algorithms we covered in class to work from right-to-
left.

(i) RR(1) Parsing (4 Points)

An RR(1) parser is similar to an LL(1) parser except that it works from right-to-left, tracing out a 
top-down, rightmost derivation.  The parser continuously consults the rightmost symbol of the 
derivation and the rightmost symbol of the input string that has not yet been matched to make its 
decisions about what production to use.  The construction and operation of this parser is 
analogous to the LL(1) case, except that instead of having FIRST and FOLLOW sets we have 
LAST and PRECEDE sets, where LAST(A) is the set of terminals that could come at the end of a 
production of A (plus ε if A can derive the empty string), and PRECEDE(A) is the set of the 
terminals that could come before a production of A in some sentential form.  Similarly, instead of 
having an end-of-input marker, we have a beginning-of-input marker, which we denote $.

Is there a grammar that is RR(1) but not LL(1)?  If so, show what it is and explain both why it is 
not LL(1) and why it is RR(1).  If not, explain why not.

(ii) RL(0) Parsing                (4 Points)

An RL(0) parser is similar to an LR(0) parser except that it scans the input from right-to-left.  We 
can speak of RL(0) items as productions with a dot marking the position of what has been 
matched so far from the right side instead of the left.  For example, if we have an RL(0) item of 
the form A → x·y, it means that we have matched y so far and are looking forward to matching x.  
Similarly, whereas an LR(0) reduce item has the form A → v·, with the dot at the end, an RL(0) 
reduce item has the form A → ·v, with a dot at the beginning, since it means we've matched all of 
v in reverse order.

Is there a grammar that is RL(0) but not LR(0)?  If so, show what it is and explain both why it is 
not LR(0) and why it is RL(0).  If not, explain why not.
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(iii) Reverse Earley Parsing             (4 Points)

A reverse Earley parser is like a standard Earley parser, except that the SCAN step moves from 
right-to-left, the PREDICT step makes predictions based on nonterminals appearing before the 
dot, and the COMPLETE step looks at items with the dot at the beginning rather than the end.  
Instead of having each item track its start position, items track their end positions.  Also, rather 
than putting the item S → ·E @1 into the first item set at the start of the algorithm, we place the 
analogous item S → E· @n+1 into the (n+1)st item set at the start.  The parser reports that the 
string has been parsed successfully if it finds S → ·E @n+1 in the first item set at the end of 
parsing.

Is there a grammar that can be parsed with a reverse Earley parser but not an Earley parser?  If so, 
show what it is and explain why it could be parsed with the reverse Earley parser but not the 
Earley parser.  If not, explain why not.

(iv) Comparison with Right-to-Left Scanning (4 points)
 
In the first problem set, you saw that certain sets of regular expressions would tokenize particular 
strings differently based on whether the scan was done from left-to-right or from right-to-left.  In 
this question, you will consider the analogous question for right-to-left parsers.

Is there a grammar that has all three of the following properties?

1. The grammar is LR(0).
2. The grammar is RL(0).
3. The parse tree produced by the LR(0) parser is not the same as the parse tree produced by 

the RL(0) parser.

If so, give an example of one and exhibit the parse trees produced by the LR(0) and RL(0) 
parsers.  If not, explain why not.


